Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nanobiotechnology ; 22(1): 90, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439048

RESUMO

Immune checkpoint inhibitor (ICI)-derived evolution offers a versatile means of developing novel immunotherapies that targets programmed death-ligand 1 (PD-L1)/programmed death-1 (PD-1) axis. However, one major challenge is T cell exhaustion, which contributes to low response rates in "cold" tumors. Herein, we introduce a fluorinated assembly system of LFNPs/siTOX complexes consisting of fluorinated EGCG (FEGCG), fluorinated aminolauric acid (LA), and fluorinated polyethylene glycol (PEG) to efficiently deliver small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) for synergistic tumor cells and exhausted T cells regulation. Using a microfluidic approach, a library of LFNPs/siTOX complexes were prepared by altering the placement of the hydrophobe (LA), the surface PEGylation density, and the siTOX ratio. Among the different formulations tested, the lead formulation, LFNPs3-3/siTOX complexes, demonstrated enhanced siRNA complexation, sensitive drug release, improved stability and delivery efficacy, and acceptable biosafety. Upon administration by the intravenous injection, this formulation was able to evoke a robust immune response by inhibiting PD-L1 expression and mitigating T cell exhaustion. Overall, this study provides valuable insights into the fluorinated assembly and concomitant optimization of the EGCG-based delivery system. Furthermore, it offers a promising strategy for cancer immunotherapy, highlighting its potential in improving response rates in ''cold'' tumors.


Assuntos
Nanopartículas , Neoplasias , Linfócitos T , Antígeno B7-H1 , Ligantes , Microfluídica , Imunoterapia , Neoplasias/tratamento farmacológico
2.
Exp Ther Med ; 26(5): 514, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37840566

RESUMO

Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide, which is associated with a poor prognosis. The present study aimed to investigate the role of cancerous inhibitor of protein phosphatase 2A (CIP2A) in OSCC and its regulatory effect on AKT1. Firstly, CIP2A and AKT1 expression in OSCC cells was detected by western blotting. After silencing CIP2A, cell viability and cell proliferation were assessed using the Cell Counting Kit-8 assay and 5-ethynyl-2'-deoxyuridine staining. Cell apoptosis was evaluated by TUNEL staining and the expression of apoptosis-related proteins was assessed using western blotting. Wound healing, Transwell and tube formation assays were performed to evaluate CAL-27 cell migration, invasion and human umbilical vein endothelial cell (HUVEC) tube formation. The interaction between CIP2A and AKT1 was identified by co-immunoprecipitation (co-IP). In addition, AKT1 was overexpressed in CIP2A-silenced CAL-27 cells to perform rescue experiments to analyze the malignant biological functions of CAL-27 cells. Finally, the expression of proteins in the glycogen synthase kinase (GSK)-3ß/ß-catenin pathway was determined by western blot analysis. Markedly elevated CIP2A and AKT1 expression was observed in OSCC cells. CIP2A knockdown inhibited the viability, proliferation, migration and invasion, and promoted the apoptosis of CAL-27 cells. Concurrently, CIP2A loss-of-function attenuated tube formation. Results of Co-IP confirmed there was an interaction between CIP2A and AKT1. Rescue experiments suggested that AKT1 overexpression alleviated the inhibitory effects of CIP2A knockdown on the viability, proliferation, migration and invasion of CAL-27 cells, as well as tube formation in HUVECs . Additionally, CIP2A silencing significantly downregulated phosphorylated-GSK-3ß and ß-catenin expression, which was reversed by AKT1 overexpression. In conclusion, CIP2A could interact with AKT1 to promote the malignant biological behaviors of OSCC cells by upregulating the GSK-3ß/ß-catenin pathway. These findings may provide a targeted therapy for OSCC treatment.

3.
J Agric Food Chem ; 71(13): 5261-5274, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36962004

RESUMO

The acephate-degrading microbes that are currently available are not optimal. In this study, Burkholderia sp. A11, an efficient degrader of acephate, presented an acephate-removal efficiency of 83.36% within 56 h (100 mg·L-1). The A11 strain has a broad substrate tolerance and presents a good removal effect in the concentration range 10-1600 mg·L-1. Six metabolites from the degradation of acephate were identified, among which the main products were methamidophos, acetamide, acetic acid, methanethiol, and dimethyl disulfide. The main degradation pathways involved include amide bond breaking and phosphate bond hydrolysis. Moreover, strain A11 successfully colonized and substantially accelerated acephate degradation in different soils, degrading over 90% of acephate (50-200 mg·kg-1) within 120 h. 16S rDNA sequencing results further confirmed that the strain A11 gradually occupied a dominant position in the soil microbial communities, causing slight changes in the diversity and composition of the indigenous soil microbial community structure.


Assuntos
Burkholderia , Inseticidas , Compostos Organotiofosforados , Biodegradação Ambiental , Inseticidas/química , Compostos Organofosforados , Compostos Organotiofosforados/química , Fosforamidas , Solo , Burkholderia/metabolismo
4.
Bioengineered ; 13(4): 8785-8797, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35333683

RESUMO

Oral squamous cell carcinoma (OSCC) is a frequent threatening head and neck malignancy. Serine hydroxymethyltransferase 2 (SHMT2) was identified to be upregulated in OSCC and its high expression was associated with poor patient prognosis. This paper set out to assess the influence of SHMT2 on OSCC progression and the potential mechanisms related to interleukin enhancer-binding factor 2 (ILF2). First of all, reverse transcription-quantitative PCR (RT-qPCR) and western blot examined the expression of SHMT2 and ILF2 in OSCC cells. Cell Counting Kit-8 (CCK-8) and colony formation assays appraised cell proliferation. Terminal-deoxynucleotidyl Transferase Mediated Nick End Labeling (TUNEL) staining was to estimate the apoptotic rate of cells. Further, wound healing and transwell assays verified the migration and invasion of cells. Western blot was adopted to detect the expression of factors related to apoptosis, migration, and epithelial-mesenchymal transition (EMT). The possible interaction of SHMT2 and ILF2 was predicted by a Molecular INTeraction (MINT) and BioGRID databases and determined using co-immunoprecipitation (IP) assay. Subsequently, ILF2 was overexpressed to investigate whether SHMT2 regulated OSCC progression by binding to ILF2. Results implied that SHMT2 possessed increased expression in OSCC cells, and OSCC cell viability, migration, invasion, EMT were inhibited and apoptosis was potentiated after its silencing. ILF2 bound to SHMT2 and ILF2 expression was downregulated after SHMT2 silencing in OSCC cells. Importantly, ILF2 overexpression abolished the suppressive role of SHMT2 interference in the progression of OSCC. Collectively, SHMT2 could promote the progression of OSCC by binding to ILF2.


Assuntos
Glicina Hidroximetiltransferase , Neoplasias Bucais , Proteína do Fator Nuclear 45 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Glicina Hidroximetiltransferase/genética , Humanos , Interleucinas , Neoplasias Bucais/genética , Neoplasias Bucais/patologia , Proteína do Fator Nuclear 45/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
5.
Environ Res ; 212(Pt A): 113137, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35358545

RESUMO

Cypermethrin is a toxic pyrethroid insecticide that is widely used in agricultural and household activities. One of the most serious issues is its persistence in the environment, because it is easily transported to the soil and aquatic ecosystem. The biodegradation of cypermethrin is emerging as an environmentally friendly method for large-scale treatment. This study examined the application of a novel binary bacterial combination-based (Bacillus thuringiensis strain SG4 and Bacillus sp. strain SG2) approach used for the enhanced degradation of cypermethrin from the environment. The bacterial strains degraded cypermethrin (80% and 85%) in the presence of external nitrogen sources (KNO3 and NaNO3). Furthermore, when immobilized in agar disc beads, the co-culture degraded cypermethrin (91.3%) with a half-life (t1/2) of 4.3 days compared to 4.9 days using sodium alginate beads. Cereal straw, farmyard manure, press mud compost, fresh cow dung, and gypsum were used as organic amendments in the soil to stimulate cypermethrin degradation. Cereal straw promoted the fastest cypermethrin degradation among the different organic amendments tested, with a t1/2 of 4.4 days. The impact of cypermethrin-degrading bacterial consortium on cypermethrin rhizoremediation was also investigated. Bacterial inoculums exhibited beneficial effects on plant biomass. Moreover, Zea mays and the bacterial partnership substantially enhanced cypermethrin degradation in soil. Six intermediate metabolites were detected during the degradation of cypermethrin, indicating that cypermethrin could be degraded first by the hydrolysis of its carboxyl ester bond, followed by the cleavage of the diaryl linkage and subsequent metabolism. Our findings highlight the promising potential and advantages of the bacterial consortium for the bioremediation of a cypermethrin-contaminated environment.


Assuntos
Bacillus thuringiensis , Bacillus , Piretrinas , Poluentes do Solo , Biodegradação Ambiental , Ecossistema , Plantas/metabolismo , Piretrinas/metabolismo , Solo , Poluentes do Solo/metabolismo , Zea mays/metabolismo
6.
J Hazard Mater ; 432: 128689, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35325860

RESUMO

Widespread use of the herbicide glyphosate in agriculture has resulted in serious environmental problems. Thus, environment-friendly technological solutions are urgently needed for the removal of residual glyphosate from soil. Here, we successfully isolated a novel bacterial strain, Chryseobacterium sp. Y16C, which efficiently degrades glyphosate and its main metabolite aminomethylphosphonic acid (AMPA). Strain Y16C was found to completely degrade glyphosate at 400 mg·L-1 concentration within four days. Kinetics analysis indicated that glyphosate biodegradation was concentration-dependent, with a maximum specific degradation rate, half-saturation constant, and inhibition constant of 0.91459 d-1, 15.79796 mg·L-1, and 290.28133 mg·L-1, respectively. AMPA was identified as the major degradation product of glyphosate degradation, suggesting that glyphosate was first degraded via cleavage of its C-N bond prior to subsequent metabolic degradation. Strain Y16C was also found to tolerate and degrade AMPA at concentrations up to 800 mg·L-1. Moreover, strain Y16C accelerated glyphosate degradation in soil indirectly by inducing a slight alteration in the diversity and composition of soil microbial community. Taken together, our results suggest that strain Y16C may be a potential microbial agent for bioremediation of glyphosate-contaminated soil.


Assuntos
Chryseobacterium , Herbicidas , Microbiota , Poluentes do Solo , Bactérias/metabolismo , Chryseobacterium/genética , Chryseobacterium/metabolismo , Glicina/análogos & derivados , Herbicidas/metabolismo , Solo/química , Poluentes do Solo/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/análise
7.
Chemosphere ; 294: 133609, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35051518

RESUMO

Biofilm-mediated bioremediation is an attractive approach for the elimination of environmental pollutants, because of its wide adaptability, biomass, and excellent capacity to absorb, immobilize, or degrade contaminants. Biofilms are assemblages of individual or mixed microbial cells adhering to a living or non-living surface in an aqueous environment. Biofilm-forming microorganisms have excellent survival under exposure to harsh environmental stressors, can compete for nutrients, exhibit greater tolerance to pollutants compared to free-floating planktonic cells, and provide a protective environment for cells. Biofilm communities are thus capable of sorption and metabolization of organic pollutants and heavy metals through a well-controlled expression pattern of genes governed by quorum sensing. The involvement of quorum sensing and chemotaxis in biofilms can enhance the bioremediation kinetics with the help of signaling molecules, the transfer of genetic material, and metabolites. This review provides in-depth knowledge of the process of biofilm formation in microorganisms, their regulatory mechanisms of interaction, and their importance and application as powerful bioremediation agents in the biodegradation of environmental pollutants, including hydrocarbons, pesticides, and heavy metals.


Assuntos
Poluentes Ambientais , Metais Pesados , Biodegradação Ambiental , Biofilmes , Poluentes Ambientais/metabolismo , Metais Pesados/metabolismo , Percepção de Quorum
8.
J Hazard Mater ; 427: 128033, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999406

RESUMO

In recent years, the proportion of organic and inorganic contaminants has increased rapidly due to growing human interference and represents a threat to ecosystems. The removal of these toxic pollutants from the environment is a difficult task. Physical, chemical and biological methods are implemented for the degradation of toxic pollutants from the environment. Among existing technologies, bioremediation in combination with nanotechnology is the most promising and cost-effective method for the removal of pollutants. Numerous studies have shown that exceptional characteristics of nanomaterials such as improved catalysis and adsorption properties as well as high reactivity have been subjects of great interest. There is an emerging trend of employing bacterial, fungal and algal cultures and their components, extracts or biomolecules as catalysts for the sustainable production of nanomaterials. They can serve as facilitators in the bioremediation of toxic compounds by immobilizing or inducing the synthesis of remediating microbial enzymes. Understanding the association between microorganisms, contaminants and nanoparticles (NPs) is of crucial importance. In this review, we focus on the removal of toxic pollutants using the cumulative effects of nanoparticles with microbial technology and their applications in different domains. Besides, we discuss how this novel nanobioremediation technique is significant and contributes towards sustainability.


Assuntos
Poluentes Ambientais , Bactérias , Biodegradação Ambiental , Ecossistema , Fungos , Humanos
9.
J Hazard Mater ; 426: 127841, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34844804

RESUMO

The microbial degradation of acephate in pure cultures has been thoroughly explored, but synergistic metabolism at the community level has rarely been investigated. Here, we report a novel microbial consortium, ZQ01, capable of effectively degrading acephate and its toxic product methamidophos, which can use acephate as a source of carbon, phosphorus and nitrogen. The degradation conditions with consortium ZQ01 were optimized using response surface methodology at a temperature of 34.1 °C, a pH of 8.9, and an inoculum size of 2.4 × 108 CFU·mL-1, with 89.5% of 200 mg L-1 acephate degradation observed within 32 h. According to the main products methamidophos, acetamide and acetic acid, a novel degradation pathway for acephate was proposed to include hydrolysis and oxidation as the main pathways of acephate degradation. Moreover, the bioaugmentation of acephate-contaminated soils with consortium ZQ01 significantly enhanced the removal rate of acephate. The results of the present work demonstrate the potential of microbial consortium ZQ01 to degrade acephate in water and soil environments, with a different and complementary acephate degradation pathway.


Assuntos
Consórcios Microbianos , Fosforamidas , Biodegradação Ambiental , Compostos Organotiofosforados , Solo , Microbiologia do Solo
10.
Front Microbiol ; 12: 717286, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790174

RESUMO

Diazinon is an organophosphorus pesticide widely used to control cabbage insects, cotton aphids and underground pests. The continuous application of diazinon in agricultural activities has caused both ecological risk and biological hazards in the environment. Diazinon can be degraded via physical and chemical methods such as photocatalysis, adsorption and advanced oxidation. The microbial degradation of diazinon is found to be more effective than physicochemical methods for its complete clean-up from contaminated soil and water environments. The microbial strains belonging to Ochrobactrum sp., Stenotrophomonas sp., Lactobacillus brevis, Serratia marcescens, Aspergillus niger, Rhodotorula glutinis, and Rhodotorula rubra were found to be very promising for the ecofriendly removal of diazinon. The degradation pathways of diazinon and the fate of several metabolites were investigated. In addition, a variety of diazinon-degrading enzymes, such as hydrolase, acid phosphatase, laccase, cytochrome P450, and flavin monooxygenase were also discovered to play a crucial role in the biodegradation of diazinon. However, many unanswered questions still exist regarding the environmental fate and degradation mechanisms of this pesticide. The catalytic mechanisms responsible for enzymatic degradation remain unexplained, and ecotechnological techniques need to be applied to gain a comprehensive understanding of these issues. Hence, this review article provides in-depth information about the impact and toxicity of diazinon in living systems and discusses the developed ecotechnological remedial methods used for the effective biodegradation of diazinon in a contaminated environment.

11.
J Nat Prod ; 84(11): 2953-2960, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34787427

RESUMO

Penicisteckins A-D (1-4), two pairs of atropodiastereomeric biaryl-type hetero- and homodimeric bis-isochromans with 7,5'- and 7,7'-linkages and a pair of atropodiastereomeric 2-(isochroman-5-yl)-1,4-benzoquinone derivatives [penicisteckins E (5) and F (6)], were isolated from the Penicillium steckii HNNU-5B18. Their structures including the absolute configuration were determined by extensive spectroscopic and single-crystal X-ray diffraction analysis and TDDFT-ECD calculations. Both the bis-isochromans and the isochroman/1,4-benzoquinone conjugates represent novel biaryl scaffolds containing both central and axial chirality elements. The monomer anserinone B (8) exhibited potent antibacterial activities against Staphylococcus aureus ATCC 29213 and methicillin-resistant Staphylococcus aureus with minimal inhibition concentration values ranging from 2 to 8 µg mL-1. Plausible biosynthetic pathways of 1-6 are proposed, which suggest how the absolute configurations of the isolates were established during the biosynthetic scheme.


Assuntos
Antibacterianos/isolamento & purificação , Cromanos/isolamento & purificação , Penicillium/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Vias Biossintéticas , Cromanos/química , Cromanos/farmacologia , Staphylococcus aureus/efeitos dos fármacos
12.
Appl Microbiol Biotechnol ; 105(20): 7695-7708, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34586458

RESUMO

Fipronil is a broad-spectrum phenyl-pyrazole insecticide that is widely used in agriculture. However, in the environment, its residues are toxic to aquatic animals, crustaceans, bees, termites, rabbits, lizards, and humans, and it has been classified as a C carcinogen. Due to its residual environmental hazards, various effective approaches, such as adsorption, ozone oxidation, catalyst coupling, inorganic plasma degradation, and microbial degradation, have been developed. Biodegradation is deemed to be the most effective and environmentally friendly method, and several pure cultures of bacteria and fungi capable of degrading fipronil have been isolated and identified, including Streptomyces rochei, Paracoccus sp., Bacillus firmus, Bacillus thuringiensis, Bacillus spp., Stenotrophomonas acidaminiphila, and Aspergillus glaucus. The metabolic reactions of fipronil degradation appear to be the same in different bacteria and are mainly oxidation, reduction, photolysis, and hydrolysis. However, the enzymes and genes responsible for the degradation are somewhat different. The ligninolytic enzyme MnP, the cytochrome P450 enzyme, and esterase play key roles in different strains of bacteria and fungal. Many unanswered questions exist regarding the environmental fate and degradation mechanisms of this pesticide. The genes and enzymes responsible for biodegradation remain largely unexplained, and biomolecular techniques need to be applied in order to gain a comprehensive understanding of these issues. In this review, we summarize the literature on the degradation of fipronil, focusing on biodegradation pathways and identifying the main knowledge gaps that currently exist in order to inform future research. KEY POINTS: • Biodegradation is a powerful tool for the removal of fipronil. • Oxidation, reduction, photolysis, and hydrolysis play key roles in the degradation of fipronil. • Possible biochemical pathways of fipronil in the environment are described.


Assuntos
Inseticidas , Poluentes do Solo , Streptomyces , Animais , Aspergillus , Biodegradação Ambiental , Pirazóis/análise , Coelhos , Poluentes do Solo/análise , Stenotrophomonas
13.
Appl Microbiol Biotechnol ; 105(11): 4369-4381, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34021814

RESUMO

The herbicide butachlor has been used in huge quantities worldwide, affecting various environmental systems. Butachlor residues have been detected in soil, water, and organisms, and have been shown to be toxic to these non-target organisms. This paper briefly summarizes the toxic effects of butachlor on aquatic and terrestrial animals, including humans, and proposes the necessity of its removal from the environment. Due to long-term exposure, some animals, plants, and microorganisms have developed resistance toward butachlor, indicating that the toxicity of this herbicide can be reduced. Furthermore, we can consider removing butachlor residues from the environment by using such butachlor-resistant organisms. In particular, microbial degradation methods have attracted much attention, with about 30 kinds of butachlor-degrading microorganisms have been found, such as Fusarium solani, Novosphingobium chloroacetimidivorans, Chaetomium globosum, Pseudomonas putida, Sphingomonas chloroacetimidivorans, and Rhodococcus sp. The metabolites and degradation pathways of butachlor have been investigated. In addition, enzymes associated with butachlor degradation have been identified, including CndC1 (ferredoxin), Red1 (reductase), FdX1 (ferredoxin), FdX2 (ferredoxin), Dbo (debutoxylase), and catechol 1,2 dioxygenase. However, few reviews have focused on the microbial degradation and molecular mechanisms of butachlor. This review explores the biochemical pathways and molecular mechanisms of butachlor biodegradation in depth in order to provide new ideas for repairing butachlor-contaminated environments. KEY POINTS: • Biodegradation is a powerful tool for the removal of butachlor. • Dechlorination plays a key role in the degradation of butachlor. • Possible biochemical pathways of butachlor in the environment are described.


Assuntos
Herbicidas , Acetanilidas , Biodegradação Ambiental , Chaetomium , Fusarium , Herbicidas/toxicidade , Humanos , Redes e Vias Metabólicas , Sphingomonadaceae , Sphingomonas
14.
J Cell Mol Med ; 25(10): 4744-4752, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33787061

RESUMO

Growing lncRNAs have been noted to involve in the initiation and development of several tumours including tongue squamous cell carcinomas (TSCCs). However, the biological role and mechanism of lncRNA RPSAP52 were not well-explained. We indicated that RPSAP52 was higher in TSCC samples compared with that in control samples. The higher expression of RPSAP52 was positively correlated with higher T stage and TNM stage. Ectopic expression of RPSAP52 induced TSCC cell growth and cycle and induced cytokine secretion including IFN-γ, IL-1ß and IL-6, IL-8, IL-10 and TGF-ß. We found that the overexpression of RPSAP52 suppressed miR-423-5p expression in SCC-4 cell. miR-423-5p was lower in TSCC samples compared with that in control samples, and miR-423-5p level was negatively correlated with higher T stage and TNM stage. Pearson's correlation indicated that miR-423-5p was negatively associated with that of RPSAP52 in TSCC tissues. Furthermore, MYBL2 was one direct gene of miR-423-5p and elevated expression of miR-423-5p suppressed MYBL2 expression and ectopic expression of RPSAP52 increased MYBL2 expression in SCC-4 cell. Finally, we illustrated that RPSAP52 overexpression promoted TSCC cell growth and cycle and induced cytokine secretion including IFN-γ, IL-1ß and IL-6, IL-8, IL-10 and TGF-ß via modulating MYBL2. These data provided new insight into RPSAP52, which may be one potential treatment target for TSCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , Neoplasias da Língua/patologia , Transativadores/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Estudos de Casos e Controles , Proteínas de Ciclo Celular/genética , Proliferação de Células , Humanos , Prognóstico , Neoplasias da Língua/genética , Neoplasias da Língua/metabolismo , Transativadores/genética , Células Tumorais Cultivadas
16.
Plants (Basel) ; 9(11)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105697

RESUMO

The thickening of Zizania latifolia shoots, referred to as gall formation, depends on infection with the fungal endophyte Ustilago esculenta. The swollen and juicy shoots are a popular vegetable in Asia. A key role for cytokinin action in this process was postulated. Here, trans-zeatin stimulated swelling in fungi-infected Z. latifolia. A two-component system (TCS) linked cytokinin binding to receptors with transcriptional regulation in the nucleus and played important roles in diverse biological processes. We characterized 69 TCS genes encoding for 25 histidine kinase/histidine-kinase-like (HK(L)) (21 HKs and 4 HKLs), 8 histidine phosphotransfer proteins (HP) (5 authentic and 3 pseudo), and 36 response regulators (RR; 14 type A, 14 type B, 2 type C, and 6 pseudo) in the genome of Z. latifolia. These TCS genes have a close phylogenetic relationship with their rice counterparts. Nineteen duplicated TCS gene pairs were found and the ratio of nonsynonymous to synonymous mutations indicated that a strong purifying selection acted on these duplicated genes, leading to few mutations during evolution. Finally, ZlCHK1, ZlRRA5, ZIRRA9, ZlRRA10, ZlPRR1, and ZlPHYA expression was associated with gall formation. Among them, ARR5, ARR9, and ZlPHYA are quickly induced by trans-zeatin, suggesting a role for cytokinin signaling in shoot swelling of Z. latifolia.

17.
Front Plant Sci ; 11: 238, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194610

RESUMO

Pectin methylesterase (PME, EC 3.1.1.11) is a hydrolytic enzyme of pectin that plays multiple roles in different plant development processes and responses to biotic stress. To characterize the molecular evolution and functional divergence of the PME gene family, a genome-wide analysis of the PME gene family in the tomato was performed. In total, 57 non-redundant PME genes were identified, and these PME genes were divided into five groups based on their phylogeneny; their classification was supported by similar gene structures and domain distributions. The PME genes were found to be unevenly distributed among 12 chromosomes of the tomato. In addition, 11 segmental duplication and 11 tandem duplication events occurred in these PME genes, implying that both contributed to the expansion of the tomato PME gene family. Non-synonymous/synonymous mutation ratio analysis revealed that positive selection played a key role in the functional divergence of PME genes. Interspecific collinear analysis indicated a large divergence in the PME gene family after the divergence of monocot and dicot plants in ancient times. Gene expression pattern analysis suggested that PMEs plays roles in the different parts of the tomato plant, including the fruit. Three newly identified candidate genes (Solyc03g083360, Solyc07g071600, and Solyc12g098340) may have functions during fruit ripening. Immunoassays suggested that the tomato isoform PE1 and PE2 may change pectin structure at cell junctions, which could be associated with fruit softening. In addition, our analysis indicate that two undescribed PE isoforms might be active in leaves and fruits. This study increases our understanding of the PME gene family in the tomato and may facilitate further functional analyses to elucidate PME function, especially during fruit ripening.

18.
Nat Prod Res ; 34(20): 2976-2980, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30990080

RESUMO

A new isopimarane-type diterpenoid, crolaevinoid A, along with four known analogues was isolated from the twigs and leaves of Croton laevigatus. The structures of the isolated compounds were established on the basis of NMR and MS spectroscopic analyses. The isolated compounds were examined the antibacterial activities. Unfortunately, the compounds showed no antibacterial activity against Micrococcus luteus, Methicillin-resistant Staphylococcus aureus, Aeromonas hydrophila, Klebsiella pneumoniae ssp pneumoniae, Acinetobacter Baumanii, and Escherichia coli.


Assuntos
Abietanos/química , Antibacterianos/farmacologia , Croton/química , Diterpenos/química , Diterpenos/farmacologia , Antibacterianos/química , Diterpenos/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Espectroscopia de Ressonância Magnética , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Estrutura Molecular , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray
19.
Nat Prod Res ; 34(22): 3205-3211, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30663369

RESUMO

Vicia sativa L. (common vetch) is a potential food source for both human beings and animals because of its abundant nutritional composition. There is a lack of phytochemical study on the whole plant, and thus the objective of this study was to investigate the isolation of phytochemicals and evaluate their biological activities. A new flavanol, (2R,3S)-3,3'-dihydroxy-4',7-dimethoxyflavanol (1), together with nine known compounds, two flavones (2-3), one coumarin (4), and six oleanane triterpenoids (5-10), was obtained from Vicia sativa L.. The structure of the new compound 1 was determined via its NMR spectra, IR and CD data. Compound 3 displayed the potential of the DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging effect in antioxidant test. In terms of cytotoxic activities, compound 3 showed moderate cytotoxic activities against three human tumor cells, especially HeLa cells.


Assuntos
Antioxidantes/farmacologia , Compostos Fitoquímicos/farmacologia , Vicia sativa/química , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/química , Dicroísmo Circular , Flavonas/análise , Células HL-60 , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/química , Extratos Vegetais/química , Folhas de Planta/química , Caules de Planta/química , Triterpenos/análise
20.
Fitoterapia ; 140: 104431, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31759031

RESUMO

Two novel heptanornemoralisin-type diterpenoids nornemoralisins A (1) and B (2), together with two known compounds nemoralisin (3) and nemoralisin A (4), were isolated from the stem bark and leaves of Aphanamixis polystachya (Wall.) R. Parker. Their structures were established through comprehensive analyses of NMR spectroscopic data and high resolution mass spectrometric (HR-ESI-MS) data. The absolute configurations of carbon stereocenters were elucidated by circular dichroism (CD) analyses. The four compounds were tested for their potential cytotoxic effects against ACHN, HeLa, SMMC-7721, and MCF-7 cell lines. Nornemoralisins A (1) and B (2) exhibited significant cytotoxicity on ACHN with an IC50 value of 13.9 ± 0.8 and 10.3 ± 0.4 µM, respectively, and other compounds failed to reveal obvious cytotoxicity on the tested cell lines, compared to positive control vinblastine (IC50, 28.0 ± 0.9 µM).


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Diterpenos/farmacologia , Meliaceae/química , Antineoplásicos Fitogênicos/isolamento & purificação , China , Diterpenos/isolamento & purificação , Humanos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Casca de Planta/química , Folhas de Planta/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...